A Novel Adaptive Back Propagation Neural Network-Unscented Kalman Filtering Algorithm for Accurate Lithium-Ion Battery State of Charge Estimation

نویسندگان

چکیده

Accurate State of Charge (SOC) estimation for lithium-ion batteries has great significance with respect to the correct decision-making and safety control. In this research, an improved second-order-polarization equivalent circuit (SO-PEC) modelling method is proposed. process estimating SOC, a joint algorithm, Adaptive Back Propagation Neural Network Unscented Kalman Filtering algorithm (ABP-UKF), It combines advantages robust learning rate in (BP) neural network linearization error reduction (UKF) algorithm. BP part, self-adjustment factor accompanies whole process, improvement corrects shortcomings UKF verification model validated using segmented double-exponential fit. Using Ampere-hour integration as reference value, results (BP-UKF) are compared, accuracy proposed by 1.29% under Hybrid Pulse Power Characterization (HPPC) working conditions, 1.28% Beijing Bus Dynamic Stress Test (BBDST) 2.24% (DST) conditions. The ABP-UKF good SOC will play important role high-precision energy management process.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel State of Charge Estimation Algorithm for Lithium-Ion Battery Packs of Electric Vehicles

This paper focuses on state of charge (SOC) estimation for the battery packs of electric vehicles (EVs). By modeling a battery based on the equivalent circuit model (ECM), the adaptive extended Kalman filter (AEKF) method can be applied to estimate the battery cell SOC. By adaptively setting different weighed coefficients, a battery pack SOC estimation algorithm is established based on the sing...

متن کامل

A New State of Charge Estimation Algorithm for Lithium-Ion Batteries Based on the Fractional Unscented Kalman Filter

An accurate state of charge (SOC) estimation is the basis of the Battery Management System (BMS). In this paper, a new estimation method which considers fractional calculus is proposed to estimate the lithium battery state of charge. Firstly, a modified second-order RC model based on fractional calculus theory is developed to model the lithium battery characteristics. After that, a pulse charac...

متن کامل

Adaptive State of Charge Estimation for Li-Ion Batteries Based on an Unscented Kalman Filter with an Enhanced Battery Model

Accurate estimation of the state of charge (SOC) of batteries is one of the key problems in a battery management system. This paper proposes an adaptive SOC estimation method based on unscented Kalman filter algorithms for lithium (Li)-ion batteries. First, an enhanced battery model is proposed to include the impacts due to different discharge rates and temperatures. An adaptive joint estimatio...

متن کامل

An Adaptive Square Root Unscented Kalman Filter Approach for State of Charge Estimation of Lithium-Ion Batteries

An accurate state of charge (SOC) estimation is of great importance for the battery management systems of electric vehicles. To improve the accuracy and robustness of SOC estimation, lithium-ion battery SOC is estimated using an adaptive square root unscented Kalman filter (ASRUKF) method. The square roots of the variance matrices of the SOC and noise can be calculated directly by the ASRUKF al...

متن کامل

Online Estimation of Lithium-Ion Battery State-of-Charge and Capacity with a Multiscale Filtering Technique

Real-time prediction of state-of-charge (SOC), state-ofhealth (SOH) and state-of-life (SOL) plays an essential role in many battery energy storage applications, such as electric vehicle (EV), hybrid electric vehicle (HEV) and smart power grid. However, among these three quantities, only the SOC has been thoroughly studies while there is still lack of rigorous research efforts on the other two q...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Metals

سال: 2022

ISSN: ['2075-4701']

DOI: https://doi.org/10.3390/met12081369